Keynote speakers

Thomas Lee
Giovanni De Micheli

Tutorial speakers

Carlos Tokunaga
Mike Moser
Nevada Sanchez
Carlos Galup-Montoro
Márcio Cherem Schneider
Alfredo Olmos
Ronald Valenzuela
Alfredo Arnaud


The symposium will cover novel technical developments, and offer tutorial overviews on topics related to circuits and systems including, but not limited to:

  • Analog and Digital Signal Processing
  • Circuits and Systems for Communications
  • Nonlinear Circuits and Systems
  • Electronic Design Automation
  • Power Systems and Power Electronic Circuits
  • RF Circuits and Systems
  • Intelligent Sensor Systems
  • Biomedical Circuits and Systems
  • VLSI Systems and Applications
  • Systems on Chip
  • Electronic Testing and Fault Tolerant Circuits
  • EDA (Electronic design automation)

Keynote speakers

libroThomas Lee

The Internet of Everything: What's Missing?

Wireless technology has evolved through three distinct ages. A fourth age -- the Internet of Everything -- is poised to explode and take us to terascale connectivity. But one trillion is a huge, almost incomprehensible number. It is so huge, in fact, that scaling presents both a qualitative and quantitative challenge. Are there enough engineers to design all of these devices? Will the economics of making chips have to change fundamentally? How are we going to provide power for all of these things? Do we need new protocols and standards? How about circuits? This talk will consider impediments to achieving the terascale and what engineers should be thinking about now to make sure that we can get to the terascale sooner than later.


Thomas Lee received his degrees from MIT, where his 1989 thesis described the world's first CMOS radio. He has been at Stanford since 1994, having previously worked at Analog Devices, Rambus and other companies. He's helped design PLLs for several microprocessors (notably AMD's K6-K7-K8 and DEC's StrongARM), and has founded or cofounded several companies, including the first 3D memory company, Matrix Semiconductor (acquired by Sandisk), and IoE companies ZeroG Wireless (acquired by Microchip) and Ayla Networks. He is an IEEE and Packard Foundation Fellow, has won "Best Paper" awards at CICC and ISSCC, was awarded the 2011 Ho-Am Prize in Engineering and an honorary doctorate from the University of Waterloo. He is on the board of Xilinx, served as Director of DARPA's Microsystems Technology Office, holds ~60 patents, and authored several textbooks. He owns 150-200 oscilloscopes, thousands of vacuum tubes, and kilograms many of obsolete semiconductors. No one, including himself, quite knows why.

libroGiovanni De Micheli

New trends is electronic systems: Technology, circuits and architectures

This talk will address the needs of new emerging technologies, such as 2-dimensional nanoelectronics, optical devices and quantum devices in terms of design support through computer aids. I will present the circuit abstractions, as well and design methods to achieve competitive circuits.

I will show where existing tools and flows can be used and where new algorithms and data structures are needed in the search of the best match between devices and architectures. I will conclude with some examples of emerging designs.


Giovanni De Micheli is Professor and Director of the Institute of Electrical Engineering and of the Integrated Systems Centre at EPF Lausanne, Switzerland. He is program leader of the program. Previously, he was Professor of Electrical Engineering at Stanford University.He holds a Nuclear Engineer degree (Politecnico di Milano, 1979), a M.S. and a Ph.D. degree in Electrical Engineering and Computer Science (University of California at Berkeley, 1980 and 1983).

Prof. De Micheli is a Fellow of ACM and IEEE, a member of the Academia Europaea and an International Honorary member of the American Academy of Arts and Sciences. His research interests include several aspects of design technologies for integrated circuits and systems, such as synthesis for emerging technologies, networks on chips and 3D integration. He is also interested in heterogeneous platform design including electrical components and biosensors, as well as in data processing of biomedical information. He is author of: Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994, co-author and/or co-editor of eight other books and of over 800 technical articles. His citation h-index is 93 according to Google Scholar. He is member of the Scientific Advisory Board of IMEC (Leuven, B), CfAED (Dresden, D) and STMicroelectronics.

Tutorial speakers

libroCarlos Tokunaga

Energy Efficient Resilient and Adaptive Circuits

Resilient and adaptive circuit techniques enable architectures that are tolerant to static and dynamic variations such as process variation, voltage droops, temperature and aging. These circuit techniques are key to reducing voltage, temperature and reliability guardbands. Guardbands are used to guarantee that systems will operate correctly on the field when subjected to variations under different workloads and operating environments. However, guardbands incur in significant loss in performance, energy efficiency and also impact the reliability of the system.

In this tutorial we will explore resilient circuit techniques used in modern microprocessors and SoCs. We will start by breaking down the different components of the guardband stack and follow up with a discussion of resilient circuits that mitigate them. We will cover resilient circuit techniques from in-situ detection and correction sequential logic to embedded critical path replica circuits to monitor timing margin. In addition, we will analyze recent advances in adaptive clocking systems and guardband-aware voltage regulation control systems.


Carlos Tokunaga is a Senior Staff Research Scientist and leads the Reliability and Resiliency Circuit Technology Group at the Circuit Research Laboratory at Intel Corporation.

Carlos received the B.S. degree in electronics engineering from the University of Los Andes, Bogotá, Colombia, in 2001, and the M.S. and Ph.D. degrees in electrical engineering from the University of Michigan, Ann Arbor, MI, USA, in 2005 and 2008, respectively. He is currently an IEEE Senior Member.

He has served in the Technical Program Committees of GLSVLSI, ISLPED, HOST, CICC and VLSI Symposium. He has published over 40 technical papers in refereed conferences and journals and has received 13 patents.

libroMike Moser

Non-volatile Storage Controllers

This tutorial will provide an overview of the key design considerations and architectural implementations for controllers used for non-volatile storage. We will begin with a brief overview of the different classes of non-volatile storage devices, including magnetic hard drives, flash memory, and emerging non-volatile memory.

An objective in the design of a controller is to provide the host computer with a simplified interface to the device. This requires that the designer understand the underlying characteristics of the storage media, and implement a set of algorithms to hide the complexity of the media programming and retrieval. We begin this process by discussing the characteristics of Flash NAND storage, including the organization of the Flash NAND die, the storage and retrieval of multiple bits per memory cell, as well as the wear, ageing, thermal effects, and error coding and correction (ECC). From there, we explore the industry transition from 2D to 3D chip architecture and its implications on device complexity.

The next step in the controller design exploration is the logical to physical translation layer that permits us to re-arrange the data within the device. We then discuss the design of the controller system-on-a-chip (SOC) including processor hierarchies, parallelism of operations, queuing and automation. Next, we cover the internal datapath for read and write operations, and we review the role of several peripherals in the controller system. We close with an overview of the host interface characteristics.

Moving on from Flash Memory, we will review three emerging non-volatile memory classes: phase change memory (PCM), resistive RAM (RRAM), and magnetoresistive RAM (MRAM). The write-in-place nature of these memory types along with the small access sizes, introduce several architectural differences, which we describe further. Finally, we discuss the new host interface protocols under development for these new memories.

We close the tutorial with an overview of industry trends, and projections for future growth.


Mike Moser is a Senior Technologist at Western Digital Corporation in Milpitas, CA, USA. He has over 30 years’ experience in the storage industry, the last ten of which have been in the architecture of Solid State Drives (SSDs) and storage systems. He led the architecture team responsible for the recently announced Western Digital Black NVMe SSD, and participated in the partnership between SanDisk and HP Enterprise to develop emerging memory devices. His most recent work is on the design of Computational Storage systems.

Mike has a Ph.D. in Applied Mechanics from Caltech, and an Sc.B. in Mechanical Engineering from Brown University. He completed his high school in Bogotá, Colombia and is fluent in Spanish.

libroNevada Sanchez

Circuit Design for Ultrasound on a Chip

As a step-up from the 200-year-old stethoscope, a point-of-care ultrasound imaging device provides a window into the human body without any ionizing radiation. At the heart of such a device is a highly-integrated semiconductor chip, which is the key enabler of the compact form factor, the high bandwidth for multi-modal versatility, and the low power consumption. The talk will first introduce the basics of medical ultrasound and ultrasonic beam-formation. There will be particular focus on the integration of MEMS ultrasonic transducers in CMOS, which offer superior bandwidth when compared traditional transducer technologies. After that, analog and digital front-end circuit blocks will be discussed, including their design strategies and challenges in expanding them into a large array. The talk will conclude with a brief overview of the Butterfly iQ™ and its Ultrasound-on-Chip™ technology. It is the first FDA cleared, "one probe, whole body imaging" medical ultrasound device, that directly plugs into an iPhone, and at a 50-fold lower price tag than existing solutions.


I am co-founder and IC Design Lead at Butterfly Network, Inc., where I developed the Ultrasound-on-Chip technology behind the Butterfly iQ, the world's first "whole body imager".

In 2010, I received a dual S.B in EECS and Mathematics with a minor in Physics from MIT. In 2011 I receive a M.Eng. in EECS, where I developed computational hardware and software for a novel radio telescope concept. I am a Hertz Fellow, a Forbes 30 Under 30 Honoree in Science, and have been granted 33 patents.

My expertise is in system design; mixed signal design and simulation; digital design and implementation; software engineering; and system integration.

libroCarlos Galup-Montoro

libroMárcio Cherem Schneider

Modeling and design of ultra-low-voltage CMOS circuits

Ultra-low-voltage (ULV) circuits have gained considerable attention in recent years because of the emergence of small batteries and self-powered applications.

Theoretically, the minimum supply voltage for the proper operation of a CMOS inverter is 2 (ln2) (kT/q) = 36 mV at room temperature. In this tutorial we analyze both the CMOS inverter and the Schmitt Trigger circuit in weak inversion operation, and discuss circuit techniques to approach the theoretical low voltage limit.

For analog circuits the minimum supply voltage has been usually considered higher than the minimum necessary for the operation of digital circuits. In this tutorial, we will present analog circuits such as rectifiers and oscillators that can operate from supply voltages below (kT/q).

Essential to the design of ULV circuits is an understanding of the transistor model and the meaning of its main parameters. We will review ultra-low-power circuits that allow the automatic extraction of the specific current IS and the threshold voltage VT of MOS transistors, which are fundamental parameters for circuit design and testing, as well as for technology characterization.

In the lecture we will discuss key issues for ULV circuits, such as MOS transistors with near zero threshold voltage, process and temperature variation of transistor parameters, and modeling features. A minimalistic ULV standard cell family and a section on ULV circuits for energy harvesting are also included.


Carlos Galup-Montoro studied engineering sciences at the University of the Republic, Montevideo, Uruguay, and electronic engineering at the National Polytechnic School of Grenoble (INPG), France. He received an engineering degree in electronics in 1979 and a doctorate degree in 1982, both from INPG. From 1982 to 1989 he was with the University of São Paulo, Brazil. Since 1990, he has been with the Electrical Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil where he is now a professor. In the second semester of the academic year 1997/98 he was a research associate with the Analog Mixed Signal Group, Texas A&M University. In the academic year 2008/09 he was a visiting scholar at UC Berkeley.

Márcio Cherem Schneider received the B.E. and M.S. degrees in electrical engineering from the Federal University of Santa Catarina (UFSC), Brazil, in 1975 and 1980, respectively, and the Ph.D. degree in electrical engineering from the University of São Paulo, São Paulo, Brazil, in 1984. In 1976 he joined the Electrical Engineering Department of UFSC, where he is now a Professor. In 1995, he spent a one-year sabbatical at the Electronics Laboratory of the Swiss Federal Institute of Technology,Lausanne. In 1997 and 2001, he was a Visiting Associate Professor at Texas A&M University.

libroAlfredo Olmos

Low-Power Low-Voltage Tamper Detection Circuits

Tamper detection is the ability of a device to sense that an active attempt to compromise the device integrity or the data associated with the device is in progress; the detection of the threat may enable the device to initiate appropriate defensive actions. The tamper detection design can be implemented to sense different types, techniques, and sophistication of tampering, depending on the perceived threats and risks. The methods used for tamper detection are typically designed as a suite of sensors each specialized on a single threat type, some of which may be physical penetration, hot or cold temperature extremes, input voltage variations, input frequency variations, x-rays, and gamma rays. The utility of this technology goes without saying; preventing the theft or damage of assets is obviously critical, and businesses should take appropriate steps to ensure that their assets remain in good condition.

In this tutorial we will describe tamper detection techniques and IC countermeasure circuit architectures. We will review tamper mechanisms covering tamper resistance, tamper evidence, tamper detection and tamper response. Tamper mechanisms are most effectively used in layers to prevent access to any critical components. They are the primary facet of physical security for embedded systems and must be properly implemented to be successful. From the designer's perspective, the costs of a successful attack should outweigh the potential rewards. Additionally, we will focus on a system to effectively detect and prevent illegal use of a MCU out of the specified voltage, temperature, and crystal oscillator frequency ranges. The attacker may drive the MCU above and below the specified ranges of power supply, temperature, and crystal oscillator clock frequency. Once one of these variables is detected to be out of range, a correspondent flag is set to signalize the MCU the potential attack. Then, the MCU may take an action to enhance the overall system security. Circuit architecture and design details are shown in this tutorial.


Alfredo Olmos was born in Cali, Colombia, in 1963, and graduated in Electrical Engineering from Valle University, Colombia, in 1989. During 1988–1990 he worked as a design engineer at the Microelectronics Laboratory of the Valle University. In 1993 he received the MSEE degree (with honors) from the University of São Paulo, Brazil. From 1995 to 1996 he was at Fujitsu Laboratories, Japan, where he developed a 4 GSps Sigma Delta Modulator using HEMT devices. In 1998 he received his Ph.D. degree from the University of São Paulo. From 1998 to 1999 he was Assistant Professor at the Industrial University of Santander, Colombia. From 1999 until 2012 he was working joint to the Analog IP Design team of Freescale Semiconductor Inc. From 2013 to 2017 he was acting as Design manager at Ceitec Semiconductors, in Brazil. Nowadays, Dr. Olmos works as Analog Consulting Engineer. Dr. Olmos holds 28 US patents, 8 Brazilian patents, 2 Europe patents, 1 China patent, and has written more than 50 technical articles as well as several application notes.

libroRonald Valenzuela

Modeling Power Intent through Unified Power Format (UPF, IEEE-1801)

Multi Voltage requirements of complex Systems on a Chip have imposed challenges to IC and IP providers. This lead the Industry to the development of what today’s is a fairly established IEEE standard for modeling these characteristics. Specifically, the standard defines the syntax and semantics of a format used to express power intent in energy-aware electronic system design. Power intent includes the concepts and information required for specification and validation, implementation and verification, and modeling and analysis of power-managed electronic systems. This tutorial will cover the main features provided by the standard and walkthrough a real use scenario in order to showcase how these can be applied to novel designs.


Ronald is an Electronics Engineer from Universidad de Concepción (Concepción, Chile), he also holds a Graduate Certificate on Electronic Circuits from Stanford University (Stanford, CA). He currently manages a team of Application Engineers (A.E.) at Synopsys. The team specialize in Multi Voltage Implementation Tools and Methodologies, covering optimization during Logic Synthesis and Place & Route. As A.E. he provides technical support to field engineers regarding tool and low power methodologies using Synopsys products, they also ensure product quality by performing functional tests using industrial design flows and they collaborate with developers to define requirements for product enhancements.

libroAlfredo Arnaud

Bulk Linearization Techniques

Bulk degeneration completes the three basic techniques of linearizing the MOS transistor, the two others are source and gate degeneration. But while source degeneration is very frequent to enhance the performance of several analog circuits, and gate degeneration has been known for a long time, the bulk linearization of a MOS differential pair was only introduced in 2007. At the present a few circuits have been reported using bulk linearization of the MOS transistors to implement high performance transconductors, micro and a nano-power Gm-C filters and amplifiers,and recently compact and highly linear MOS pseudo-resistors. A very interesting result is a minimum in the third harmonic distortion as a result of bulk linearization.

In this tutorial the bulk linearization of the MOS transistor is firstly presented and then analyzed in depth. First the basic concepts of source, gate, degeneration to enhance the linearity of a MOS differential pair are presented, and then the bulk degeneration is introduced. The state of the art in the theory, circuits, and measurements is presented. Then the bulk linearization of the MOS transistor in the triode region, allowing to implement compact and highly linear MOS pseudo resistors is discussed, as well as a bulk-linearized MOS composite transistor. Finally, several application circuits are discussed including nano-power biomedical filters and amplifiers, linear oscillators (AGC and limiting oscillators will be compared), and RF circuits.


Alfredo Arnaud received his PhD, and MSc in microelectronics from Universidad de la República, Montevideo – Uruguay, in 2000 and 2004 respectively. Since 2004 he joined Electrical Engineering Department at Universidad Católica del Uruguay, where he started DIE research group. Dr. Arnaud holds two patents and as an academic he published more than 80 papers in international journals and scientific meetings and participated in 18 funded R&D projects. Dr Arnaud is the co-founder of two technology companies: Alassio SA in 2004 dedicated to electronics & SW development for POS, medical, RFID devices & traceability within de agribusiness industry among others, and Chipmate in 2009 a spin-off of the DIE aimed at the design of application specific integrated circuits for medical devices and others. For the industry, Dr. Arnaud participated in design and consultancy in the field of microelectronics for implantable medical devices in five different occasions for companies in Uruguay, Brazil, Canada, and India. Dr. Arnaud also participated in the development of embedded electronics like portable POS equipment, a USB dynamic scale for medical applications, and a portable RFID reader according to ISO11784/11785 standard. He is currently IEEE-CAS chapter chair in Uruguay.

mapa mapa mapa mapa mapa

Please click the image to show the event information

mapa VENUE

mapa mapa mapa mapa mapa

Please touch the image to show the event information

Event information:

LASCAS will be held at the Hotel Mocawa Plaza in Armenia, Colombia

Address & Contact:

Carrera 14 No. 9 Norte – 00
Armenia, Quindío

Phone: +57 6 7359599
Cell Phone: +57 317 5729275


The event will be host at Hotel Mocawa Plaza, and we recommend lodging at this place. For the conference, the special rates are:

Single Occupancy: $240.000 COP
Double Occupancy: $300.000 COP
Triple Occupancy: $360.000 COP

Add tax 19% VAT and $ 6,500 hotel insurance per person per night (optional)
1 USD = $3200 COP (by November 2018)

Rooms have to be booked directly with the hotel, mentioning LASCAS to obtain the reduced rate. Please write an email to:

Carolina Barrios Lora
Hoteles Mocawa

You can find other suggestions for lodging near LASCAS in the following map:

Near LASCAS 2019

LASCAS is the Flagship Conference of IEEE's Circuits and Systems Society in Latin America. Since its inception and first edition in 2010, LASCAS aims at presenting a high-quality forum for researchers and graduate students to present the advances of their work, admits an international audience with experts from all over the world. This 10th edition will take place in Armenia, Quindío, Colombia.

Armenia City is the capital of the department of Quindio. It is located in the Colombian region known as the coffee triangle. Since 2011, this region is recognized by the UNESCO as a world cultural heritage due to its exceptional landscapes that are the mixture of natural beautifulness and cultural traditions around the coffee growing. Different theme parks related to cultural and agricultural traditions are also located in the department of Quindio, which turns out the LASCAS 2019 an opportunity not only for academic exchange but also for knowing and enjoying the traditions around the coffee growing.



All papers must be uploaded using EasyChair, following

Papers should be presented following the IEEE Proceedings format (download it here), and must not exceed four pages in length.

Ignore the header, and please do not number your pages. Bios and photos are not included in Conference Proceedings, thus please do not include them either.

Download Final Paper Instructions


Special Session Proposal /

Paper Submission / Tutorial Submission

October 3, 2018 (Extended final deadline)

Notification of acceptance

November 9, 2018 (Deadline extension)

Camera-ready Submission

November 25, 2018 (Deadline extension)

Download CFP

Proceedings will be published by IEEE and will be available at IEEE Xplore. Best Papers will be invited to a special edition of the IEEE Transactions on Circuits and Systems I (TCAS-I).

Social Activities: Besides the technical program, a welcome reception and a gala dinner are planned. Visitors will have the opportunity to visit several tourist attractions.